Applied Sciences (Dec 2022)
Sub-Diffraction Focusing Using Metamaterial-Based Terahertz Super-Oscillatory Lens
Abstract
This paper presents a metamaterial-based super-oscillatory lens (SOL) fabricated by photolithography on a glass substrate and designed to operate at sub-terahertz (sub-THz) frequencies. The lens consists of repeating crisscross patterns of five-ring slits with sub-wavelength diameter. The lens is capable of generating multiple focal points smaller than the diffraction limit, thereby allowing many points to be inspected simultaneously with sub-wavelength resolution. After elucidating the influence of the lens parameters on light collection through calculations by the finite element method, the fabricated lens was then evaluated through actual experiments and found to have a focal length of 7.5 mm (2.5λ) and a hot spot size of 2.01 mm (0.67λ) at 0.1 THz (λ = 3 mm), which is 0.27 times the diffraction limit of the lens. This demonstrated sub-diffraction focusing capability is highly effective for industrial inspection applications utilizing terahertz waves.
Keywords