Physical Review X (Apr 2013)

Spatially Resolved Study of Backscattering in the Quantum Spin Hall State

  • Markus König,
  • Matthias Baenninger,
  • Andrei G. F. Garcia,
  • Nahid Harjee,
  • Beth L. Pruitt,
  • C. Ames,
  • Philipp Leubner,
  • Christoph Brüne,
  • Hartmut Buhmann,
  • Laurens W. Molenkamp,
  • David Goldhaber-Gordon

DOI
https://doi.org/10.1103/PhysRevX.3.021003
Journal volume & issue
Vol. 3, no. 2
p. 021003

Abstract

Read online Read online

The discovery of the quantum spin Hall (QSH) state, and topological insulators in general, has sparked strong experimental efforts. Transport studies of the quantum spin Hall state have confirmed the presence of edge states, showed ballistic edge transport in micron-sized samples, and demonstrated the spin polarization of the helical edge states. While these experiments have confirmed the broad theoretical model, the properties of the QSH edge states have not yet been investigated on a local scale. Using scanning gate microscopy to perturb the QSH edge states on a submicron scale, we identify well-localized scattering sites which likely limit the expected nondissipative transport in the helical edge channels. In the micron-sized regions between the scattering sites, the edge states appear to propagate unperturbed, as expected for an ideal QSH system, and are found to be robust against weak induced potential fluctuations.