Case Studies in Thermal Engineering (Nov 2022)
Improving the thermal characteristics of a cooling tower by replacing the operating fluid with functionalized and non-functionalized aqueous MWCNT nanofluids
Abstract
In this study, the thermal properties of the operating fluid by replacing the fluid with better thermal properties and lower water loss in a cross-flow cooling tower (CFWCT) investigated. For this purpose, MWCNTs/H2O, MWCNTs-COOH/H2O, and MWCNTs-OH/H2O nanofluids were used instead of water, and the results were compared. The visual method and dynamic light scattering (DLS) were used to guarantee the stability of nanofluids and to determine the size distribution of the nanoparticles in the nanofluid. The influence of nanofluids concentration on cooling towers performance variables such as evaporation rate, performance characteristics, temperature drop, and tower efficiency were investigated. The results showed that the functionalized nanofluids with lower evaporation rates than water and the non-functionalized nanofluids with higher evaporation rates than water improved the thermal performance of CFWCT. For example, at a concentration of 0.1 wt% MWCNTs-COOH/H2O, MWCNTs-OH/H2O, and MWCNTs/H2O, the efficiency of the cooling tower was 46%, 45.3%, and 43.2%, and the performance characteristics were improved by 15.8%, 11.2%, and 6.1%, respectively, compared with water. Among the nanofluids, MWCNTs-COOH/H 2 O nanofluid had the best performance, in which the evaporation rate, performance characteristics, temperature drop, and efficiency were increased by about −4.3%, 15.8%, 15.9%, and 8.7%, respectively, compared to water.