IEEE Access (Jan 2020)

A Survey on Routing Protocols for Delay and Energy-Constrained Cognitive Radio Networks

  • Rita Abu Diab,
  • Nabil Bastaki,
  • Atef Abdrabou

DOI
https://doi.org/10.1109/ACCESS.2020.3035325
Journal volume & issue
Vol. 8
pp. 198779 – 198800

Abstract

Read online

The ever-growing demand for higher network data rates, lower delay, and conservative energy consumption at reduced costs, to support Internet-of-things (IoT) communications, has pushed wireless technologies into a new frontier. The growing demand for such technologies can be attributed to several factors, such as the massive number of the upcoming bandwidth-hungry IoT applications and the enormous number of - often battery-powered - devices expected to connect to the network. Cognitive Radio Networks (CRNs) can play a significant role in future generations of mobile-communication technologies by providing dynamic access to underutilized licensed bands. However, battery-operated devices, which communicate delay-sensitive data over multihop links, impose serious energy-delay limits. In such CRN-based IoT communications, as one device depletes its energy, network disconnectivity may arise, which can degrade the network efficiency. Therefore, building a reactive routing protocol to recover from any sudden link breakage is necessary to maintain prolonged network connectivity. This paper provides a comprehensive survey of CRN routing protocols that are based on two essential metrics, namely, packet delay, energy consumption, or both, while excluding all other CRN routing protocols. The survey is meant to support the designers of future CRN-based IoT communication frameworks with a detailed comparative survey, which targets the most relevant proposed routing protocols, including the specifics of the routing metrics, implemented spectrum awareness strategy, and employed medium-access control standard along with the simulator tool used for performance evaluation. In addition, this survey finds that the majority of cognitive radio routing protocols address either delay or energy consumption, but only a few consider a joint delay-energy metric, which suits delay-sensitive IoT applications running on energy-constrained devices.

Keywords