MicrobiologyOpen (Apr 2021)

The genome sequence of hairy root Rhizobium rhizogenes strain LBA9402: Bioinformatics analysis suggests the presence of a new opine system in the agropine Ri plasmid

  • Marjolein J. G. Hooykaas,
  • Paul J. J. Hooykaas

DOI
https://doi.org/10.1002/mbo3.1180
Journal volume & issue
Vol. 10, no. 2
pp. n/a – n/a

Abstract

Read online

Abstract We report here the complete genome sequence of the Rhizobium rhizogenes (formerly Agrobacterium rhizogenes) strain LBA9402 (NCPPB1855rifR), a pathogenic strain causing hairy root disease. To assemble a complete genome, we obtained short reads from Illumina sequencing and long reads from Oxford Nanopore Technology sequencing. The genome consists of a 3,958,212 bp chromosome, a 2,005,144 bp chromid (secondary chromosome) and a 252,168 bp Ri plasmid (pRi1855), respectively. The primary chromosome was very similar to that of the avirulent biocontrol strain K84, but the chromid showed a 724 kbp deletion accompanied by a large 1.8 Mbp inversion revealing the dynamic nature of these secondary chromosomes. The sequence of the agropine Ri plasmid was compared to other types of Ri and Ti plasmids. Thus, we identified the genes responsible for agropine catabolism, but also a unique segment adjacent to the TL region that has the signature of a new opine catabolic gene cluster including the three genes that encode the three subunits of an opine dehydrogenase. Our sequence analysis also revealed a novel gene at the very right end of the TL‐DNA, which is unique for the agropine Ri plasmid. The protein encoded by this gene was most related to the succinamopine synthases of chrysopine and agropine Ti plasmids and thus may be involved in the synthesis of the unknown opine that can be degraded by the adjacent catabolic cluster. The available sequence will facilitate the use of R. rhizogenes and especially LBA9402 in both the laboratory and for biotechnological purposes.

Keywords