Biogeosciences (Feb 2011)

Sensitivity of pelagic calcification to ocean acidification

  • R. Gangstø,
  • F. Joos,
  • M. Gehlen

DOI
https://doi.org/10.5194/bg-8-433-2011
Journal volume & issue
Vol. 8, no. 2
pp. 433 – 458

Abstract

Read online

Ocean acidification might reduce the ability of calcifying plankton to produce and maintain their shells of calcite, or of aragonite, the more soluble form of CaCO<sub>3</sub>. In addition to possibly large biological impacts, reduced CaCO<sub>3</sub> production corresponds to a negative feedback on atmospheric CO<sub>2</sub>. In order to explore the sensitivity of the ocean carbon cycle to increasing concentrations of atmospheric CO<sub>2</sub>, we use the new biogeochemical Bern3D/PISCES model. The model reproduces the large scale distributions of biogeochemical tracers. With a range of sensitivity studies, we explore the effect of (i) using different parameterizations of CaCO<sub>3</sub> production fitted to available laboratory and field experiments, of (ii) letting calcite and aragonite be produced by auto- and heterotrophic plankton groups, and of (iii) using carbon emissions from the range of the most recent IPCC Representative Concentration Pathways (RCP). Under a high-emission scenario, the CaCO<sub>3</sub> production of all the model versions decreases from ~1 Pg C yr<sup>−1</sup> to between 0.36 and 0.82 Pg C yr<sup>−1</sup> by the year 2100. The changes in CaCO<sub>3</sub> production and dissolution resulting from ocean acidification provide only a small feedback on atmospheric CO<sub>2</sub> of −1 to −11 ppm by the year 2100, despite the wide range of parameterizations, model versions and scenarios included in our study. A potential upper limit of the CO<sub>2</sub>-calcification/dissolution feedback of −30 ppm by the year 2100 is computed by setting calcification to zero after 2000 in a high 21st century emission scenario. The similarity of feedback estimates yielded by the model version with calcite produced by nanophytoplankton and the one with calcite, respectively aragonite produced by mesozooplankton suggests that expending biogeochemical models to calcifying zooplankton might not be needed to simulate biogeochemical impacts on the marine carbonate cycle. The changes in saturation state confirm previous studies indicating that future anthropogenic CO<sub>2</sub> emissions may lead to irreversible changes in &Omega;<sub>A</sub> for several centuries. Furthermore, due to the long-term changes in the deep ocean, the ratio of open water CaCO<sub>3</sub> dissolution to production stabilizes by the year 2500 at a value that is 30–50% higher than at pre-industrial times when carbon emissions are set to zero after 2100.