Mitochondria-Targeted Delivery of Camptothecin Based on HPMA Copolymer for Metastasis Suppression
Xiaoli Yi,
Yue Yan,
Xinran Shen,
Lian Li,
Yuan Huang
Affiliations
Xiaoli Yi
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, China
Yue Yan
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, China
Xinran Shen
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, China
Lian Li
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, China
Yuan Huang
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, China
Poor anti-metastasis effects and side-effects remain a challenge for the clinical application of camptothecin (CPT). Mitochondria can be a promising target for the treatment of metastatic tumors due to their vital roles in providing energy supply, upregulating pro-metastatic factors, and controlling cell-death signaling. Thus, selectively delivering CPT to mitochondria appears to be a feasible way of improving the anti-metastasis effect and reducing adverse effects. Here, we established a 2-(dimethylamino) ethyl methacrylate (DEA)-modified N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer–CPT conjugate (P-DEA-CPT) to mediate the mitochondrial accumulation of CPT. The mitochondria-targeted P-DEA-CPT could overcome multiple barriers by quickly internalizing into 4T1 cells, then escaping from lysosome, and sufficiently accumulating in mitochondria. Subsequently, P-DEA-CPT greatly damaged mitochondrial function, leading to the reactive oxide species (ROS) elevation, energy depletion, apoptosis amplification, and tumor metastasis suppression. Consequently, P-DEA-CPT successfully inhibited both primary tumor growth and distant metastasis in vivo. Furthermore, our studies revealed that the mechanism underlying the anti-metastasis capacity of P-DEA-CPT was partially via downregulation of various pro-metastatic proteins, such as hypoxia induction factor-1α (HIF-1α), matrix metalloproteinases-2 (MMP-2), and vascular endothelial growth factor (VEGF). This study provided the proof of concept that escorting CPT to mitochondria via a mitochondrial targeting strategy could be a promising approach for anti-metastasis treatment.