Nature Communications (Feb 2021)

Forecasting influenza activity using machine-learned mobility map

  • Srinivasan Venkatramanan,
  • Adam Sadilek,
  • Arindam Fadikar,
  • Christopher L. Barrett,
  • Matthew Biggerstaff,
  • Jiangzhuo Chen,
  • Xerxes Dotiwalla,
  • Paul Eastham,
  • Bryant Gipson,
  • Dave Higdon,
  • Onur Kucuktunc,
  • Allison Lieber,
  • Bryan L. Lewis,
  • Zane Reynolds,
  • Anil K. Vullikanti,
  • Lijing Wang,
  • Madhav Marathe

DOI
https://doi.org/10.1038/s41467-021-21018-5
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 12

Abstract

Read online

Human mobility plays a central role in the spread of infectious diseases and can help in forecasting incidence. Here the authors show a comparison of multiple mobility benchmarks in forecasting influenza, and demonstrate the value of a machine-learned mobility map with global coverage at multiple spatial scales.