Nature Communications (Nov 2024)

Selective electrosynthesis of hydroxylamine from aqueous nitrate/nitrite by suppressing further reduction

  • Yirong Tang,
  • Zhan Jiang,
  • Yubo Yuan,
  • Li Xu,
  • Chuyao Jin,
  • Bulin Chen,
  • Zhichao Lin,
  • Jie Zao,
  • Jianwei Du,
  • Xiao Zhang,
  • Xiang Gao,
  • Yongye Liang

DOI
https://doi.org/10.1038/s41467-024-54204-2
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 10

Abstract

Read online

Abstract The electrocatalytic reduction of nitrogenous waste offers a sustainable approach to producing nitrogen-containing chemicals. The selective synthesis of high-value hydroxylamine (NH2OH) is challenging due to the instability of NH2OH as an intermediate. Here, we present a rational electrocatalyst design strategy for promoting NH2OH electrosynthesis by suppressing the competing pathways of further reduction. We screen zinc phthalocyanines (ZnPc) with a high energy barrier for NH2OH reduction by regulating their intrinsic activity. Additionally, we discover that carbon nanotube substrates exhibit significant NH3-producing activity, which can be effectively inhibited by the high coverage of ZnPc molecules. In-situ characterizations reveal that NH2OH and HNO are generated as intermediates in nitrate reduction to NH3, and NH2OH can be enriched in the ZnPc electrode. In the H-cell, the optimized ZnPc catalyst demonstrates a Faradaic efficiency (FE) of 53 ± 1.7% for NH2OH with a partial current density exceeding 270 mA cm−2 and a turnover frequency of 7.5 ± 0.2 s−1. It also enables the rapid electrosynthesis of cyclohexanone oxime from nitrite with a FE of 64 ± 1.0%.