Microbial Cell Factories (Dec 2023)

Enhancement of phycocyanin productivity and thermostability from Arthrospira platensis using organic acids

  • Mohamed Gomaa,
  • Shimaa Abdelmohsen Ali,
  • Awatief F. Hifney

DOI
https://doi.org/10.1186/s12934-023-02256-2
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Intracellular hyperaccumulation of phycocyanin (PC) and its high susceptibility to degradation at higher temperatures are major challenging problems associated with its production from cyanobacteria. The present study evaluated different concentrations of organic acids (1, 2, and 3 mM) (citric acid, acetic acid, succinic acid, fumaric acid, and oxalic acid) under fed-batch mode on the biomass and phycobiliproteins’ production from Arthrospira platensis. Besides they were evaluated at 2.5–7.5 mM as preservative to stabilize PC at high temperatures. The incorporation of 3 mM of succinic acid into the cultivation medium enhanced the biomass and PC productivity to 164.05 and 26.70 mg L−1 day−1, which was ~ 2- and threefold higher than control, respectively. The produced PC in this treatment was food-grade with a 2.2 purity ratio. The use of organic acids also enhanced the thermal stability of PC. Citric acid (7.5 mM) markedly promoted the half-life values of PC to 189.44 min compared to 71.84 min in the control. The thermodynamic analysis confirmed higher thermostability of PC in the presence of organic acids and indicated the endothermic and non-spontaneity of the thermal denaturation process. The findings of the present study confirmed that organic acids could be utilized as cost effective and sustainable compounds for promoting not only phycobiliproteins’ production but also the thermostability of PC for potential application in food industry.

Keywords