Atmospheric Measurement Techniques (Feb 2022)

Characterizing and correcting the warm bias observed in Aircraft Meteorological Data Relay (AMDAR) temperature observations

  • S. de Haan,
  • P. M. A. de Jong,
  • J. van der Meulen

DOI
https://doi.org/10.5194/amt-15-811-2022
Journal volume & issue
Vol. 15
pp. 811 – 818

Abstract

Read online

Some aircraft temperature observations, retrieved through the Aircraft Meteorological Data Relay (AMDAR), suffer from a significant warm bias when comparing observations with numerical weather prediction (NWP) models. In this paper we show that this warm bias of AMDAR temperature can be characterized and consequently reduced substantially. The characterization of this warm bias is based on the methodology of measuring temperature with a moving sensor and can be split into two separate processes. The first process depends on the flight phase of the aircraft and relates to difference of timing, as it appears that the times of measurement of altitude and temperature differ. When an aircraft is ascending or descending, this will result in a small bias in temperature due to the (on average) presence of an atmospheric temperature lapse rate. The second process is related to internal corrections applied to pressure altitude without feedback to temperature observation measurement. Based on NWP model temperature data, combined with additional information on Mach number and true airspeed, we were able to estimate corrections using data over an 18-month period from January 2017 to July 2018. Next, the corrections were applied to AMDAR observations over the period from September 2018 to mid-December 2019. Comparing these corrected temperatures with (independent) radiosonde temperature observations demonstrates a reduction of the temperature bias from 0.5 K to around zero and a reduction of standard deviation of almost 10 %.