International Journal of Biomedical Imaging (Jan 2008)

In Vitro Assessment of Optical Properties of Blood by Applying the Extended Huygens-Fresnel Principle to Time-Domain Optical Coherence Tomography Signal at 1300 nm

  • Dan P. Popescu,
  • Michael G. Sowa

DOI
https://doi.org/10.1155/2008/591618
Journal volume & issue
Vol. 2008

Abstract

Read online

A direct method for the measurement of the optical attenuation coefficient and the scattering anisotropy parameter based on applying the extended Huygens-Fresnel principle to optical coherence tomography images of blood is demonstrated. The images are acquired with a low-power probing beam at the wavelength of 1300 nm. Values of 12.15 mm−1 and 0.95 are found for the total attenuation coefficient and the scattering anisotropy factor, respectively. Also, as a preliminary step, the optical refraction index is determined with a precision of two decimal numbers directly from optical coherence images. The total attenuation coefficient and the scattering anisotropy factor are determined with precisions within experimental error margins of 5% and 2%, respectively. Readable OCT signal is obtained for a maximum propagation of light into blood of 0.25 mm. At the maximum probed depth, the measured signal is almost 103 smaller than its initial intensity when entering the sample.