Carrier–Tumor Cell Membrane Interactions for Optimized Delivery of a Promising Drug, 4(<i>RS</i>)-4-F<sub>4t</sub>-Neuroprostane
Ariana Abawi,
Céline Thomann,
Giovanna Lollo,
Thierry Granjon,
Emma Petiot,
Anna Bérot,
Camille Oger,
Valérie Bultel-Poncé,
Alexandre Guy,
Jean-Marie Galano,
Thierry Durand,
Agnès Girard-Egrot,
Ofelia Maniti
Affiliations
Ariana Abawi
Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, University Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France
Céline Thomann
Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, University Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France
Giovanna Lollo
Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, LAGEPP UMR 5007, University Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France
Thierry Granjon
Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, University Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France
Emma Petiot
Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, University Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France
Anna Bérot
Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, University Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France
Camille Oger
Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, F-34293 Montpellier, France
Valérie Bultel-Poncé
Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, F-34293 Montpellier, France
Alexandre Guy
Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, F-34293 Montpellier, France
Jean-Marie Galano
Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, F-34293 Montpellier, France
Thierry Durand
Pôle Chimie Balard Recherche, Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, Université de Montpellier, CNRS, ENSCM, F-34293 Montpellier, France
Agnès Girard-Egrot
Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, University Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France
Ofelia Maniti
Institute of Molecular and Supramolecular Chemistry and Biochemistry, ICBMS UMR 5246, University Lyon, Université Lyon 1, CNRS, F-69622 Lyon, France
Nanomedicines engineered to deliver molecules with therapeutic potentials, overcoming drawbacks such as poor solubility, toxicity or a short half-life, are targeted towards their cellular destination either passively or through various elements of cell membranes. The differences in the physicochemical properties of the cell membrane between tumor and nontumor cells have been reported, but they are not systematically used for drug delivery purposes. Thus, in this study, a new approach based on a match between the liposome compositions, i.e., membrane fluidity, to selectively interact with the targeted cell membrane was used. Lipid-based carriers of two different fluidities were designed and used to deliver 4(RS)-4-F4t-Neuroprostane (F4t-NeuroP), a potential antitumor molecule derived from docosahexaenoic acid (DHA). Based on its hydrophobic character, F4t-NeuroP was added to the lipid mixture prior to liposome formation, a protocol that yielded over 80% encapsulation efficiency in both rigid and fluid liposomes. The presence of the active molecule did not modify the liposome size but increased the liposome negative charge and the liposome membrane fluidity, which suggested that the active molecule was accommodated in the lipid membrane. F4t-NeuroP integration in liposomes with a fluid character allowed for the selective targeting of the metastatic prostate cell line PC-3 vs. fibroblast controls. A significant decrease in viability (40%) was observed for the PC-3 cancer line in the presence of F4t-NeuroP fluid liposomes, whereas rigid F4t-NeuroP liposomes did not alter the PC-3 cell viability. These findings demonstrate that liposomes encapsulating F4t-NeuroP or other related molecules may be an interesting model of drug carriers based on membrane fluidity.