Scientific Reports (Dec 2023)

SARS-CoV-2 spike receptor-binding domain is internalized and promotes protein ISGylation in human induced pluripotent stem cell-derived cardiomyocytes

  • Shota Okuno,
  • Shuichiro Higo,
  • Takumi Kondo,
  • Mikio Shiba,
  • Satoshi Kameda,
  • Hiroyuki Inoue,
  • Tomoka Tabata,
  • Shou Ogawa,
  • Yu Morishita,
  • Congcong Sun,
  • Saki Ishino,
  • Tomoyuki Honda,
  • Shigeru Miyagawa,
  • Yasushi Sakata

DOI
https://doi.org/10.1038/s41598-023-48084-7
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Although an increased risk of myocarditis has been observed after vaccination with mRNA encoding severe acute respiratory syndrome coronavirus 2 spike protein, its underlying mechanism has not been elucidated. This study investigated the direct effects of spike receptor-binding domain (S-RBD) on human cardiomyocytes differentiated from induced pluripotent stem cells (iPSC-CMs). Immunostaining experiments using ACE2 wild-type (WT) and knockout (KO) iPSC-CMs treated with purified S-RBD demonstrated that S-RBD was bound to ACE2 and internalized into the subcellular space in the iPSC-CMs, depending on ACE2. Immunostaining combined with live cell imaging using a recombinant S-RBD fused to the superfolder GFP (S-RBD-sfGFP) demonstrated that S-RBD was bound to the cell membrane, co-localized with RAB5A, and then delivered from the endosomes to the lysosomes in iPSC-CMs. Quantitative PCR array analysis followed by single cell RNA sequence analysis clarified that S-RBD-sfGFP treatment significantly upregulated the NF-kβ pathway-related gene (CXCL1) in the differentiated non-cardiomyocytes, while upregulated interferon (IFN)-responsive genes (IFI6, ISG15, and IFITM3) in the matured cardiomyocytes. S-RBD-sfGFP treatment promoted protein ISGylation, an ISG15-mediated post-translational modification in ACE2-WT-iPSC-CMs, which was suppressed in ACE2-KO-iPSC-CMs. Our experimental study demonstrates that S-RBD is internalized through the endolysosomal pathway, which upregulates IFN-responsive genes and promotes ISGylation in the iPSC-CMs.