PLoS ONE (Jan 2018)
Fosmetpantotenate (RE-024), a phosphopantothenate replacement therapy for pantothenate kinase-associated neurodegeneration: Mechanism of action and efficacy in nonclinical models.
Abstract
In cells, phosphorylation of pantothenic acid to generate phosphopantothenic acid by the pantothenate kinase enzymes is the first step in coenzyme A synthesis. Pantothenate kinase 2, the isoform localized in neuronal cell mitochondria, is dysfunctional in patients with pantothenate kinase-associated neurodegeneration. Fosmetpantotenate is a phosphopantothenic acid prodrug in clinical development for treatment of pantothenate kinase-associated neurodegeneration, which aims to replenish phosphopantothenic acid in patients. Fosmetpantotenate restored coenzyme A in short-hairpin RNA pantothenate kinase 2 gene-silenced neuroblastoma cells and was permeable in a blood-brain barrier model. The rate of fosmetpantotenate metabolism in blood is species-dependent. Following up to 700 mg/kg orally, blood exposure to fosmetpantotenate was negligible in rat and mouse, but measurable in monkey. Consistent with the difference in whole blood half-life, fosmetpantotenate dosed orally was found in the brains of the monkey (striatal dialysate) but was absent in mice. Following administration of isotopically labeled-fosmetpantotenate to mice, ~40% of liver coenzyme A (after 500 mg/kg orally) and ~50% of brain coenzyme A (after 125 μg intrastriatally) originated from isotopically labeled-fosmetpantotenate. Additionally, 10-day dosing of isotopically labeled-fosmetpantotenate, 12.5 μg, intracerebroventricularly in mice led to ~30% of brain coenzyme A containing the stable isotopic labels. This work supports the hypothesis that fosmetpantotenate acts to replace reduced phosphopantothenic acid in pantothenate kinase 2-deficient tissues.