Air, Soil and Water Research (Oct 2024)
Feasibility of Bioremediation of Iron-Contaminated Water Using Trichonephila Clavipes Spider Webs
Abstract
Heavy metals are of great environmental and sanitary importance due to the toxicity they generate; therefore, a wide variety of methods for elimination in water has been studied. One of the approaches employed is bioremediation, which involves the use of biomass (microorganisms or plants), living plants (phytoremediation), or biomaterials to eliminate these elements. In this study, we investigated the technical feasibility of using the Trichonephila clavipes spider web as a biomaterial for iron removal from water by bioremediation. A bibliometric analysis was carried out, where the process variables and experimental design were defined using the Response Surface Methodology, and the iron concentrations were measured before and after the experiment using X-ray fluorescence spectroscopy by dispersive energy. The model predicted an iron removal of 91.82% using 28.09 hr, 81.42 ppm of iron, and 0.062 g of spider web, with a relative error of 0.043 of the true value. This work is novel and presents a new methodology for the bioremediation of water contaminated with iron using spider webs. The results indicate a high efficiency in the removal of iron, which could have important implications in solving environmental and health problems associated with the presence of heavy metals in water.