Micromachines (Sep 2024)

Parallelization of Curved Inertial Microfluidic Channels to Increase the Throughput of Simultaneous Microparticle Separation and Washing

  • Nima Norouzy,
  • Arsalan Nikdoost,
  • Pouya Rezai

DOI
https://doi.org/10.3390/mi15101228
Journal volume & issue
Vol. 15, no. 10
p. 1228

Abstract

Read online

The rising global need for clean water highlights the importance of efficient sample preparation methods to separate and wash various contaminants such as microparticles. Microfluidic methods for these purposes have emerged but they mostly deliver either separation or washing, with very low throughputs. Here, we investigate parallelization of a curved-channel particle separation and washing device in order to increase its throughput for sample preparation. A curved microchannel applies inertial forces to focus larger 10 µm microparticles at the inner wall of the channel and separate them from smaller 5 µm microparticles at the outer wall. At the same time, Dean flow recirculation is used to exchange the carrier solution of the large microparticles to a clean buffer (washing). We increased the number of curved channels in a stepwise manner from two to four to eight channels in two different arraying designs, i.e., rectangular and polar arrays. We examined efficient separation of target 10 µm particles from 5 µm particles, while transferring the larger microparticles into a clean buffer. Dean flow recirculation studies demonstrated that the rectangular arrayed device performs better, providing solution exchange efficiencies of more than 96% on average as compared to 89% for the polar array device. Our 8-curve rectangular array device provided a particle separation efficiency of 98.93 ± 0.91%, while maintaining a sample purity of 92.83 ± 1.47% at a high working flow rate of 12.8 mL/min. Moreover, the target particles were transferred into a clean buffer with a solution exchange efficiency of 96.81 ± 0.54% in our 8-curve device. Compared to the literature, our in-plane parallelization design of curved microchannels resulted in a 13-fold increase in the working flow rate of the setup while maintaining a very high performance in particle separation and washing. Our microfluidic device offers the potential to enhance the throughput and the separation and washing efficiencies in applications for biological and environmental samples.

Keywords