PLoS ONE (Jan 2023)

The combination model of CNN and GCN for machine fault diagnosis.

  • Qianqian Zhang,
  • Caiyun Hao,
  • Zhongwei Lv,
  • Qiuxia Fan

DOI
https://doi.org/10.1371/journal.pone.0292381
Journal volume & issue
Vol. 18, no. 10
p. e0292381

Abstract

Read online

Learning powerful discriminative features is the key for machine fault diagnosis. Most existing methods based on convolutional neural network (CNN) have achieved promising results. However, they primarily focus on global features derived from sample signals and fail to explicitly mine relationships between signals. In contrast, graph convolutional network (GCN) is able to efficiently mine data relationships by taking graph data with topological structure as input, making them highly effective for feature representation in non-Euclidean space. In this article, to make good use of the advantages of CNN and GCN, we propose a graph attentional convolutional neural network (GACNN) for effective intelligent fault diagnosis, which includes two subnetworks of fully CNN and GCN to extract the multilevel features information, and uses Efficient Channel Attention (ECA) attention mechanism to reduce information loss. Extensive experiments on three datasets show that our framework improves the representation ability of features and fault diagnosis performance, and achieves competitive accuracy against other approaches. And the results show that GACNN can achieve superior performance even under a strong background noise environment.