Modifications of Mitochondrial Network Morphology Affect the MAVS-Dependent Immune Response in L929 Murine Fibroblasts during Ectromelia Virus Infection
Karolina Gregorczyk-Zboroch,
Lidia Szulc-Dąbrowska,
Pola Pruchniak,
Małgorzata Gieryńska,
Matylda Barbara Mielcarska,
Zuzanna Biernacka,
Zbigniew Wyżewski,
Iwona Lasocka,
Weronika Świtlik,
Alicja Szepietowska,
Patrycja Kukier,
Aleksandra Kwiecień-Dębska,
Jakub Kłęk
Affiliations
Karolina Gregorczyk-Zboroch
Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
Lidia Szulc-Dąbrowska
Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
Pola Pruchniak
Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
Małgorzata Gieryńska
Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
Matylda Barbara Mielcarska
Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
Zuzanna Biernacka
Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
Zbigniew Wyżewski
Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, 01-815 Warsaw, Poland
Iwona Lasocka
Department of Biology of Animal Environment, Institute of Animal Science, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
Weronika Świtlik
Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
Alicja Szepietowska
Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
Patrycja Kukier
Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
Aleksandra Kwiecień-Dębska
Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
Jakub Kłęk
Division of Immunology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
Since smallpox vaccination was discontinued in 1980, there has been a resurgence of poxvirus infections, particularly the monkeypox virus. Without a global recommendation to use the smallpox vaccine, the population is not immune, posing a severe threat to public health. Given these circumstances, it is crucial to understand the relationship between poxviruses and their hosts. Therefore, this study focuses on the ectromelia virus, the causative agent of mousepox, which serves as an excellent model for studying poxvirus pathogenesis. Additionally, we investigated the role of mitochondria in innate antiviral immunity during ECTV infection, focusing specifically on mitochondrial antiviral signaling protein. The study used a Moscow strain of ECTV and L929 mouse fibroblasts. Cells were treated with ECTV and chemical modulators of mitochondrial network: Mdivi-1 and CCCP. Our investigation revealed that an elongated mitochondrial network attenuates the suppression of MAVS-dependent immunity by ECTV and reduces ECTV replication in L929 fibroblasts compared to cells with an unaltered mitochondrial network. Conversely, a fragmented mitochondrial network reduces the number of progeny virions while increasing the inhibition of the virus-induced immune response during infection. In conclusion, our study showed that modifications of mitochondrial network morphology alter MAVS-dependent immunity in ECTV-infected mouse L929 fibroblasts.