PLoS ONE (Jan 2018)
The tempo and mode of the taxonomic correction process: How taxonomists have corrected and recorrected North American bird species over the last 127 years.
Abstract
While studies of taxonomy usually focus on species description, there is also a taxonomic correction process that retests and updates existing species circumscriptions on the basis of new evidence. These corrections may themselves be subsequently retested and recorrected. We studied this correction process by using the Check-List of North and Middle American Birds, a well-known taxonomic checklist that spans 130 years. We identified 142 lumps and 95 splits across sixty-three versions of the Check-List and found that while lumping rates have markedly decreased since the 1970s, splitting rates are accelerating. We found that 74% of North American bird species recognized today have never been corrected (i.e., lumped or split) over the period of the checklist, while 16% have been corrected exactly once and 10% have been corrected twice or more. Since North American bird species are known to have been extensively lumped in the first half of the 20th century with the advent of the biological species concept, we determined whether most splits seen today were the result of those lumps being recorrected. We found that 5% of lumps and 23% of splits fully reverted previous corrections, while a further 3% of lumps and 13% of splits are partial reversions. These results show a taxonomic correction process with moderate levels of recorrection, particularly of previous lumps. However, 81% of corrections do not revert any previous corrections, suggesting that the majority result in novel circumscriptions not previously recognized by the Check-List. We could find no order or family with a significantly higher rate of correction than any other, but twenty-two genera as currently recognized by the AOU do have significantly higher rates than others. Given the currently accelerating rate of splitting, prediction of the end-point of the taxonomic recorrection process is difficult, and many entirely new taxonomic concepts are still being, and likely will continue to be, proposed and further tested.