Journal of Lipid Research (Jan 2013)

Assays of plasma dehydrocholesteryl esters and oxysterols from Smith-Lemli-Opitz syndrome patients[S]

  • Wei Liu,
  • Libin Xu,
  • Connor R. Lamberson,
  • Louise S. Merkens,
  • Robert D. Steiner,
  • Ellen R. Elias,
  • Dorothea Haas,
  • Ned A. Porter

Journal volume & issue
Vol. 54, no. 1
pp. 244 – 253

Abstract

Read online

Smith-Lemli-Opitz syndrome (SLOS) is caused by mutations in the gene encoding 3β-hydroxysterol-Δ7-reductase and as a result of this defect, 7-dehydrocholesterol (7-DHC) and 8-dehydrocholesterol (8-DHC) accumulate in the fluids and tissues of patients with this syndrome. Both 7- and 8-DHC are susceptible to peroxidation reactions, and several biologically active DHC oxysterols are found in cell and animal models of SLOS. Ex vivo oxidation of DHCs can be a confounding factor in the analysis of these sterols and their esters, and we developed HPLC/MS methods that permit the direct analysis of cholesterol, 7-DHC, 8-DHC, and their esters in human plasma, thus avoiding ex vivo oxidation. In addition, three oxysterols were classified as endogenously formed products by the use of an isotopically-labeled 7-DHC (d7-7-DHC) added to the sample before workup, followed by MS analysis of products formed. Analysis of 17 SLOS plasma samples shows that 8-DHC linoleate correlates better with the SLOS severity score of the patients than other sterols or metabolites, including cholesterol and 7-DHC. Levels of 7-ketocholesterol also correlate with the SLOS severity score. 8-DHC esters should have utility as surrogate markers of severity in SLOS for prognostication and as endpoints in clinical trials.

Keywords