BioMedical Engineering OnLine (Jul 2024)
Applications of nanotechnology in orthodontics: a comprehensive review of tooth movement, antibacterial properties, friction reduction, and corrosion resistance
Abstract
Abstract Nanotechnology has contributed important innovations to medicine and dentistry, and has also offered various applications to the field of orthodontics. Intraoral appliances must function in a complex environment that includes digestive enzymes, a diverse microbiome, mechanical stress, and fluctuations of pH and temperature. Nanotechnology can improve the performance of orthodontic brackets and archwires by reducing friction, inhibiting bacterial growth and biofilm formation, optimizing tooth remineralization, improving corrosion resistance and biocompatibility of metal substrates, and accelerating or decelerating orthodontic tooth movement through the application of novel nanocoatings, nanoelectromechanical systems, and nanorobots. This comprehensive review systematically explores the orthodontic applications of nanotechnology, particularly its impacts on tooth movement, antibacterial activity, friction reduction, and corrosion resistance. A search across PubMed, the Web of Science Core Collection, and Google Scholar yielded 261 papers, of which 28 met our inclusion criteria. These selected studies highlight the significant benefits of nanotechnology in orthodontic devices. Recent clinical trials demonstrate that advancements brought by nanotechnology may facilitate the future delivery of more effective and comfortable orthodontic care.
Keywords