Electronic Research Archive (Jul 2023)

Existence of solutions for Kirchhoff-type systems with critical Sobolev exponents in $ \mathbb{R}^3 $

  • Xing Yi,
  • Shuhou Ye

DOI
https://doi.org/10.3934/era.2023269
Journal volume & issue
Vol. 31, no. 9
pp. 5286 – 5312

Abstract

Read online

In this paper, we study the following Kirchhoff-type system: $ \begin{equation} \left\{ \begin{array}{ll} -(a_{1}+b_{1}\int_{\mathbb{R}^{3}}|\nabla u|^{2}dx)\Delta u = \frac{2\alpha}{\alpha+\beta}|u|^{\alpha-2}u|v|^{\beta}+\varepsilon f(x), \\ -(a_{2}+b_{2}\int_{\mathbb{R}^{3}}|\nabla v|^{2}dx)\Delta v = \frac{2\beta}{\alpha+\beta}|u|^{\alpha}|v|^{\beta-2}v+\varepsilon g(x), \\ (u, v)\in D^{1, 2}(\mathbb{R}^{3})\times D^{1, 2}(\mathbb{R}^{3}), \end{array} \right. \end{equation} $ where $ a_{1}, a_{2}\geq0, \; b_{1}, b_{2} > 0, \; \alpha, \beta > 1, \; \alpha+\beta = 6 $ and $ f(x), g(x)\geq0, \; f(x), g(x)\in L^{\frac{6}{5}}(\mathbb{R}^3). $ The aim of this paper is to demonstrate the existence of at least two solutions for system (0.1), utilizing the variational method. To achieve this, we construct an energy functional and analyze its critical points by applying the Ekeland variational principle, the mountain pass lemma and the concentration compactness principle.

Keywords