Physical Review Accelerators and Beams (Oct 2017)
Cavity voltage phase modulation to reduce the high-luminosity Large Hadron Collider rf power requirements
Abstract
The Large Hadron Collider (LHC) radio frequency (rf) and low-level rf (LLRF) systems are currently configured for constant rf voltage to minimize transient beam loading effects. The present scheme cannot be extended beyond nominal LHC beam current (0.55 A dc) and cannot be sustained for the high-luminosity (HL-LHC) beam current (1.1 A dc), since the demanded power would exceed the peak klystron power. A new scheme has therefore been proposed: for beam currents above nominal (and possibly earlier), the voltage reference will reproduce the modulation driven by the beam (transient beam loading), but the strong rf feedback and one-turn delay feedback will still be active for loop and beam stability. To achieve this, the voltage reference will be adapted for each bunch. This paper includes a theoretical derivation of the optimal cavity modulation, introduces the implemented algorithm, summarizes simulation runs that tested the algorithm performance, and presents results from a short LHC physics fill with the proposed implementation.