Remote Sensing (May 2022)
Soil Salinity Variations and Associated Implications for Agriculture and Land Resources Development Using Remote Sensing Datasets in Central Asia
Abstract
Global agricultural lands are becoming saline because of human activities that have affected crop production and food security worldwide. In this study, the spatiotemporal variability of soil electrical conductivity (EC) in Central Asia was evaluated based on high-resolution multi-year predicted soil EC data, Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product, precipitation, reference evapotranspiration, population count, and soil moisture datasets. We primarily detected pixel-based soil EC trends over the past three decades and correlated soil EC with potential deriving factors. The results showed an overall increase in salt-affected areas between 1990 and 2018 for different land cover types. The soil EC trend increased by 6.86% (p < 0.05) over Central Asia during 1990–2018. The open shrub lands dominated by woody perennials experienced the highest increasing soil salinity trend, particularly in Uzbekistan and Turkmenistan local areas, while there was a decreasing soil EC trend in the cropland areas, such as in Bukhara and Khorezm (Uzbekistan). The main factors that affect the variability of soil salinity were strongly associated with population pressure and evapotranspiration. This study provides comprehensive soil EC variations and trends from the local to regional scales. Agriculture and land resource managers must tackle the rising land degradation concerns caused by the changing climate in arid lands and utilise geoinformatics.
Keywords