Si and C emission into the oxide layer during the oxidation of silicon carbide and its influence on the oxidation rate
Yasuto Hijikata,
Ryosuke Asafuji,
Ryotaro Konno,
Yurie Akasaka,
Ryo Shinoda
Affiliations
Yasuto Hijikata
Division of Mathematics Electronics and Information Sciences, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
Ryosuke Asafuji
Division of Mathematics Electronics and Information Sciences, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
Ryotaro Konno
Division of Mathematics Electronics and Information Sciences, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
Yurie Akasaka
Division of Mathematics Electronics and Information Sciences, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
Ryo Shinoda
Division of Mathematics Electronics and Information Sciences, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama 338-8570, Japan
Si and C emission into the oxide layer during the oxidation of silicon carbide and SiO2 growth on the oxide surface were experimentally confirmed from depth profiles of oxidized HfO2/SiC structures. With longer oxidation times, surface SiO2 growth transitioned to oxide/SiC interface growth. The influence of Si and C emission on the oxidation rate was investigated by real-time measurements of the oxide growth rate. Experimental observations of annealing-inserted oxidation and two-temperature oxidation indicated that the emission suppressed the oxidation rate.