Heliyon (Apr 2024)

Novel bioactive nanospheres show effective antibacterial effect against multiple endodontic pathogens

  • Jin Liu,
  • Haoze Wu,
  • Jun Qiu,
  • Sirui Yang,
  • Doudou Xiang,
  • Xinhua Zhang,
  • Jinxin Kuang,
  • Min Xiao,
  • Qing Yu,
  • Xiaogang Cheng

Journal volume & issue
Vol. 10, no. 7
p. e28266

Abstract

Read online

Aim: The current study evaluated the antibacterial activity of a newly developed quaternary ammonium polymethacrylate (QAPM)-containing bioactive glasses (BGs) via a two-step method by our group, namely BGs-HAEMB, and explored its cytotoxicity and biocompatibility. Methods: The antibacterial effects of the BGs-HAEMB against planktonic bacteria, bacterial biofilm formation, and experimental root canal biofilms of persistent pathogens (Enterococcus faecalis, Streptococcus sanguis and Porphyromonas endodontalis) associated with endodontic infection were evaluated in vitro by agar diffusion tests, direct contact tests and live/dead staining. The cytotoxicity and biocompatibility of BGs-HAEMB were evaluated by CCK-8 assays in vitro and a skin implantation model in vivo. Results: Compared to three clinically used endodontic sealers (Endofill, AH Plus, and iRoot SP), BGs-HAEMB exhibited the relatively strongest antibacterial effect against E. faecalis, S. sanguis and P. endodontalis after sitting for 14 and 28 days (P < 0.01). SEM images and CLSM images also showed that for each tested bacteria, BGs-HAEMB killed the most microorganism among all the experimental groups, regardless of treatment for 7 days or 28 days (P < 0.05). Besides, the BGs-HAEMB-treated groups showed a relatively low cytotoxicity (RGRs ranging from 88.6% to 102.9%) after 1, 3, and 7 days of exposure. Meanwhile, after 28 days of implantation, the inflammatory grade in BGs-HAEMB treated group was assessed as Grade I, in which the average numbers of inflammatory cells (6.7 ± 2.1) were less than 25. Conclusions: BGs-HAEMB exerted a long-term and stable antibacterial effect. The remarkable biocompatibility of BGs-HAEMB in vitro and in vivo confirmed its possible clinical application as a potential alternative in the development of the next generation of endodontic sealers.

Keywords