Solid Earth (Jul 2016)

Alpine tectonic wedging and crustal delamination in the Cantabrian Mountains (NW Spain)

  • J. Gallastegui,
  • J. A. Pulgar,
  • J. Gallart

DOI
https://doi.org/10.5194/se-7-1043-2016
Journal volume & issue
Vol. 7, no. 4
pp. 1043 – 1057

Abstract

Read online

The Cantabrian Mountains have been interpreted as a Paleozoic basement block uplifted during an Alpine deformation event that led to the partial closure of the Bay of Biscay and the building of the Pyrenean range in the Cenozoic. A detailed interpretation of deep seismic reflection profile ESCIN-2 and the two-dimensional seismic modelling of the data allowed us to construct a N–S geological cross section along the southern border of the Cantabrian Mountains and the transition to the Duero Cenozoic foreland basin, highlighting the Alpine structure. The proposed geological cross section has been constrained by all geophysical data available, including a 2-D gravity model constructed for this study as well as refraction and magnetotelluric models from previous studies. A set of south-vergent thrusts dipping 30 to 36° to the north, cut the upper crust with a ramp geometry and sole in the boundary with the middle crust. These thrusts are responsible for the uplift and the main Alpine deformation in the Cantabrian Mountains. A conspicuous reflective Moho shows that the crust thickens northwards from the Duero basin, where subhorizontal Moho is 32 km deep, to 47 km in the northernmost end of ESCIN-2, where Moho dips to the north beneath the Cantabrian Mountains. Further north, out of the profile, Moho reaches a maximum depth of 55 km, according to wide-angle/refraction data. ESCIN-2 indicates the presence of a tectonic wedge of the crust of the Cantabrian margin beneath the Cantabrian Mountains, which is indented from north to south into the delaminated Iberian crust, forcing its northward subduction.