Buildings (Jun 2024)
Study on Seismic Performance of RC Frame Structures Considering the Effect of Infilled Walls
Abstract
This paper studies the impact of half-height infilled walls on the failure modes of frame columns through quasi-static tests of both frame models and half-height infilled wall frame models. Based on the experimental results, a seismic analysis model of reinforced concrete (RC) frame structures is established, and parametric studies are carried out to analyze the effects of masonry materials and masonry heights on the seismic performance of structures. The results show that the load-bearing capacity and stiffness of the structure are improved, while the ductility of the structure is reduced because of the existence of infilled walls. As the height of infilled walls increases, there is a notable decrease in the free height of frame columns. At a wall-to-column height ratio of 0.2, the masonry walls exert a negligible effect on the frame structure’s seismic performance. In contrast, at a ratio of 0.6, there is a transition in column failure modes from bending to shearing. When evaluated at consistent masonry heights, aerated concrete block-infilled walls demonstrate the least impact on the seismic performance of RC frame structures. Thus, in the absence of additional structural enhancements, the use of aerated concrete blocks is recommended to mitigate the negative implications of infilled walls on the seismic integrity of RC frames.
Keywords