Nanoscale Research Letters (Mar 2020)
Designing Aptamer-Gold Nanoparticle-Loaded pH-Sensitive Liposomes Encapsulate Morin for Treating Cancer
Abstract
Abstract This study proposes the synthesis of a type of anticancer nanoparticle, aptamers and Au nanoparticle (Apt-Au)-modified Morin pH-sensitive liposome (MSL), which exhibits targeting properties. Tumors are difficult to cure because their microenvironment varies from that of normal tissue; its pH is lower than that of normal tissue, which generally impedes the effectiveness of drugs. Thus, pH-responsive drugs have attracted extensive attention. Gold nanoparticles (AuNPs) show potential as drug carriers because of their small size, good biocompatibility, easy surface modification, and strong cell penetration. Apt-Au@MSL exhibits excellent monodispersity and tumor-targeting properties and can be released in partly acidic environment via dialysis. We screened our model cancer cell by MTT assay and found that SGC-7901 cells can effectively suppress proliferation. In vivo results demonstrate that the administration of Apt-Au@MSL could inhibit tumor growth in xenograft mouse models. H&E staining and TUNEL assay further confirmed that Apt-Au@MSL can promote tumor apoptosis. Apt-Au@MSL may induce apoptosis by triggering overproduction of reactive oxygen species (ROS) and regulating multiple signal crosstalk. Both blood biochemistry tests and H&E staining suggested that these materials exhibit negligible acute toxicity and good biocompatibility in vivo. With its powerful function, Apt-Au@MSL can be used as a target-based anticancer material for future clinical cancer treatment.
Keywords