3D structured Bessel beam polarization and its application to imprint chiral optical properties in silica
Jiafeng Lu,
Mostafa Hassan,
François Courvoisier,
Enrique Garcia-Caurel,
François Brisset,
Razvigor Ossikovski,
Xianglong Zeng,
Bertrand Poumellec,
Matthieu Lancry
Affiliations
Jiafeng Lu
Institut de Chimie Moléculaire et des Matériaux d’Orsay, Université Paris Saclay, Orsay 91405, France
Mostafa Hassan
FEMTO-ST Institute, CNRS, University of Franche-Comté, Besançon 25030, France
François Courvoisier
FEMTO-ST Institute, CNRS, University of Franche-Comté, Besançon 25030, France
Enrique Garcia-Caurel
LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau 91128, France
François Brisset
Institut de Chimie Moléculaire et des Matériaux d’Orsay, Université Paris Saclay, Orsay 91405, France
Razvigor Ossikovski
LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau 91128, France
Xianglong Zeng
Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
Bertrand Poumellec
Institut de Chimie Moléculaire et des Matériaux d’Orsay, Université Paris Saclay, Orsay 91405, France
Matthieu Lancry
Institut de Chimie Moléculaire et des Matériaux d’Orsay, Université Paris Saclay, Orsay 91405, France
Polarization plays a crucial role in light–matter interactions; hence its overall manipulation is an essential key to unlock the versatility of light manufacturing, especially in femtosecond laser direct writing. Existing polarization-shaping techniques, however, only focus on their manipulation in the transverse plane of light beams, i.e., two-dimensional control. In this paper, we propose a novel passive strategy that exploits a class of femtosecond laser written space varying birefringent elements to shape the polarization state along the optical path. As a demonstration, we generate a three-dimensional structured Bessel beam whose linear polarization state slowly evolves along the focus (typ. 90° within 60λ). Such a “helically polarized” Bessel beam allows imprinting “twisted nanogratings” in SiO2 glass which result in an extrinsic optical chirality at a micrometric scale and own a high optical rotation. Our work provides new perspectives for three-dimensional polarization manipulation and insights into applications in structured light, light–matter interaction, and chiral device fabrication.