Earth, Planets and Space (Oct 2021)

Shallow tectonic tremor activities in Hyuga-nada, Nankai subduction zone, based on long-term broadband ocean bottom seismic observations

  • Yusuke Yamashita,
  • Masanao Shinohara,
  • Tomoaki Yamada

DOI
https://doi.org/10.1186/s40623-021-01533-x
Journal volume & issue
Vol. 73, no. 1
pp. 1 – 11

Abstract

Read online

Abstract The study of slow earthquake activity, which occurs in the shallow and deep sides of seismogenic zone, is crucial for understanding subduction zones, including variations in frictional properties with depth and interplate coupling. Observations at the seafloor are necessary, particularly for shallow slow earthquakes occurring in offshore areas; however, few observations of such activity have been made. We conducted long-term seismic observations on the seafloor in the Hyuga-nada region, located at the western end of the Nankai Trough, to characterize shallow low-frequency tremor activity from 2014 to 2017. Although these observations lasted for only a few years, the occurrence frequency of shallow tremors in Hyuga-nada was lower than that of deep tremors in the Nankai Trough, and major activity involving migration occurred only once every two or more years. In contrast, minor activity with a duration of a few days occurred several times a year. Major activities in 2015 were accompanied by migration similar to those in 2013. The tremors in 2013 were characterized by south to north migration at a rate of 30–60 km/day. However, the tremors in 2015 were characterized by west to east migration, and the activity area extended further to the east. The migration rates were also much slower (several to 20 km/day) than in 2013. These different migration properties likely reflect the state of interplate coupling in the down-dip side of shallow slow earthquake area. Minor activity was identified, including tremors triggered by the 2015 Nepal and 2016 Kumamoto earthquakes. Activity occurred mainly in the focal regions of major activities. Very-low-frequency earthquakes (VLFEs) occurred concurrently with tremors, and their epicenters coincided within the margin of error. However, the VLFEs were mostly peripheral to the shallow tremor concentration zones. This indicates that minor heterogeneities in frictional properties are present along the shallow plate boundary.

Keywords