Annales Geophysicae (Oct 2017)

Mesospheric OH layer altitude at midlatitudes: variability over the Sierra Nevada Observatory in Granada, Spain (37° N, 3° W)

  • M. García-Comas,
  • M. J. López-González,
  • F. González-Galindo,
  • J. L. de la Rosa,
  • M. López-Puertas,
  • M. G. Shepherd,
  • G. G. Shepherd

DOI
https://doi.org/10.5194/angeo-35-1151-2017
Journal volume & issue
Vol. 35
pp. 1151 – 1164

Abstract

Read online

The mesospheric OH layer varies on several timescales, primarily driven by variations in atomic oxygen, temperature, density and transport (advection). Vibrationally excited OH airglow intensity, rotational temperature and altitude are closely interrelated and thus accompany each other through these changes. A correct interpretation of the OH layer variability from airglow measurements requires the study of the three variables simultaneously. Ground-based instruments measure excited OH intensities and temperatures with high temporal resolution, but they do not generally observe altitude directly. Information on the layer height is crucial in order to identify the sources of its variability and the causes of discrepancies in measurements and models. We have used SABER space-based 2002–2015 data to infer an empirical function for predicting the altitude of the layer at midlatitudes from ground-based measurements of OH intensity and rotational temperature. In the course of the analysis, we found that the SABER altitude (weighted by the OH volume emission rate) at midlatitudes decreases at a rate of 40 m decade−1, accompanying an increase of 0.7 % decade−1 in OH intensity and a decrease of 0.6 K decade−1 in OH equivalent temperature. SABER OH altitude barely changes with the solar cycle, whereas OH intensity and temperature vary by 7.8 % per 100 s.f.u. and 3.9 K per 100 s.f.u., respectively. For application of the empirical function to Sierra Nevada Observatory SATI data, we have calculated OH intensity and temperature SATI-to-SABER transfer functions, which point to relative instrumental drifts of −1.3 % yr−1 and 0.8 K yr−1, respectively, and a temperature bias of 5.6 K. The SATI predicted altitude using the empirical function shows significant short-term variability caused by overlapping waves, which often produce changes of more than 3–4 km in a few hours, going along with 100 % and 40 K changes in intensity and temperature, respectively. SATI OH layer wave effects are smallest in summer and largest around New Year's Day. Moreover, those waves vary significantly from day to day. Our estimations suggest that peak-to-peak OH nocturnal variability, mainly due to wave variability, changes within 60 days at least 0.8 km for altitude in autumn, 45 % for intensity in early winter and 6 K for temperature in midwinter. Plausible upper limit ranges of those variabilities are 0.3–0.9 km, 40–55 % and 4–7 K, with the exact values depending on the season.