AIMS Mathematics (May 2021)

Global bifurcation result and nodal solutions for Kirchhoff-type equation

  • Fumei Ye,
  • Xiaoling Han

DOI
https://doi.org/10.3934/math.2021482
Journal volume & issue
Vol. 6, no. 8
pp. 8331 – 8341

Abstract

Read online

We investigate the global structure of nodal solutions for the Kirchhoff-type problem $ \left\{\begin{array}{ll} -(a+b\int_{0}^{1}|u'|^2dx)u'' = \lambda f(u),\ x\in (0,1),\\[2ex] u(0) = u(1) = 0, \end{array} \right. $ where $ a > 0, b > 0 $ are real constants, $ \lambda $ is a real parameter. $ f\in C(\mathbb{R}, \mathbb{R}) $ and there exist four constants $ s_1\leq s_2 < 0 < s_3\leq s_4 $ such that $ f(0) = f(s_i) = 0, i = 1, 2, 3, 4 $, $ f(s) > 0 $ for $ s\in(s_1, s_2)\cup(0, s_3)\cup(s_4, +\infty), f(s) < 0 $ for $ s\in(-\infty, s_1)\cup(s_2, 0)\cup(s_3, s_4) $. Under some suitable assumptions on nonlinear terms, we prove the existence of unbounded continua of nodal solutions of this problem which bifurcate from the line of trivial solutions or from infinity, respectively.

Keywords