Nature Communications (Jul 2025)
Electrochemical coupling of carbon monoxide and amine on iodide coordination stabilized Cuδ+ site
Abstract
Abstract The use of renewable electricity to drive the electrocatalytic coupling of CO with nitrogen-containing organics offers a promising strategy for producing high-value chemicals. In this work, we conduct a systematic investigation of the coordination effect between iodide and copper oxide to generate Cuδ+ active sites. These Cuδ+ sites enable the electrosynthesis of dimethylacetamide from CO and dimethylamine. Through precise regulation of the electrode surface microenvironment, a dimethylacetamide Faradaic efficiency of 45.6% is achieved at a partial current density of 182.4 mA·cm-2, with a production rate of 435.9 mmol·gcat. −1·h-1 and selectivity approaching 70%. Mechanistic studies reveal that specific adsorption of I- forms an iodide-enriched Cu0/Cu+ interface that synergistically promotes dimethylacetamide formation by enhancing adsorption of ketene intermediates (*CCO) and facilitating C–N bonds formation. This anion-coordination interfacial engineering strategy demonstrates broad applicability for synthesizing various acetamide derivatives from CO2/CO and amine, providing a foundational framework for electrocatalytic C-N coupling in acetamide synthesis.