Scientific Reports (May 2017)

Topological Quantum Phase Transition and Local Topological Order in a Strongly Interacting Light-Matter System

  • Sujit Sarkar

DOI
https://doi.org/10.1038/s41598-017-01726-z
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 15

Abstract

Read online

Abstract An attempt is made to understand the topological quantum phase transition, emergence of relativistic modes and local topological order of light in a strongly interacting light-matter system. We study this system, in a one dimensional array of nonlinear cavities. Topological quantum phase transition occurs with massless excitation only for the finite detuning process. We present a few results based on the exact analytical calculations along with the physical explanations. We observe the emergence of massive Majorana fermion mode at the topological state, massless Majorana-Weyl fermion mode during the topological quantum phase transition and Dirac fermion mode for the non-topological state. Finally, we study the quantized Berry phase (topological order) and its connection to the topological number (winding number).