Heliyon (Mar 2024)
iPro2L-DG: Hybrid network based on improved densenet and global attention mechanism for identifying promoter sequences
Abstract
The promoter is a key DNA sequence whose primary function is to control the initiation time and the degree of expression of gene transcription. Accurate identification of promoters is essential for understanding gene expression studies. Traditional sequencing techniques for identifying promoters are costly and time-consuming. Therefore, the development of computational methods to identify promoters has become critical. Since deep learning methods show great potential in identifying promoters, this study proposes a new promoter prediction model, called iPro2L-DG. The iPro2L-DG predictor, based on an improved Densely Connected Convolutional Network (DenseNet) and a Global Attention Mechanism (GAM), is constructed to achieve the prediction of promoters. The promoter sequences are combined feature encoding using C2 encoding and nucleotide chemical property (NCP) encoding. An improved DenseNet extracts advanced feature information from the combined feature encoding. GAM evaluates the importance of advanced feature information in terms of channel and spatial dimensions, and finally uses a Full Connect Neural Network (FNN) to derive prediction probabilities. The experimental results showed that the accuracy of iPro2L-DG in the first layer (promoter identification) was 94.10% with Matthews correlation coefficient value of 0.8833. In the second layer (promoter strength prediction), the accuracy was 89.42% with Matthews correlation coefficient value of 0.7915. The iPro2L-DG predictor significantly outperforms other existing predictors in promoter identification and promoter strength prediction. Therefore, our proposed model iPro2L-DG is the most advanced promoter prediction tool. The source code of the iPro2L-DG model can be found in https://github.com/leirufeng/iPro2L-DG.