Journal of Marine Science and Engineering (May 2023)
Influence of Beach Erosion during Wave Action in Designed Artificial Sandy Beach Using XBeach Model: Profiles and Shoreline
Abstract
Beach width is an important factor for tourists’ comfort, and the backshore is a swash zone where sediment moves quickly. Artificial sandy beaches focus on beach width stability and evolution. This paper is based on an artificial beach project in Haikou Bay, where, in view of the existing conditions, a new type of beach profile that can protect beach berm and width without being eroded by large wave action. Numerical simulation based on XBeach model were conducted to predict the morphodynamical responses of the beach, including a diagnosis of the erosion spots under storm and normal wave events, respectively. Sediment fluxes along and across the shoreline under varied scenarios, dependent on profile width and backshore slope, were discussed. It was found that normal waves with lower heights and longer periods can induce stronger erosion than storm waves due to the landform of the inner-bay in Haikou Bay. Engineering and biological methods to reduce beach erosion during wave action were discussed. Biological methods such as green-plants-root-system can retain berm surface sediment without allowing it to be transported offshore by wave action. The design concept of this artificial beach project may inspire more beach design and protection projects in coastal zones.
Keywords