Buildings (Aug 2023)

Experimental Study on Solidified Lake Sediment Based on Industrial Solid Waste and Construction Waste: Stabilization and Mechanism

  • Mengyi Liu,
  • Yiqie Dong,
  • Meng Zang,
  • Guanghua Cai,
  • Haijun Lu

DOI
https://doi.org/10.3390/buildings13082053
Journal volume & issue
Vol. 13, no. 8
p. 2053

Abstract

Read online

Occupation of land and damage to the surrounding ecosystem may occur due to the accumulation of dredged lake sediments. In order to solve the large amount of dredged lake sediments, industrial wastes (slag, desulfurization gypsum) and urban construction waste were used to solidify the lake substrate, obtained a new construction material. Water content, volumetric shrinkage, unconfined compressive strength and flexural strength parameters and hydraulic conductivity coefficients of the solidified sediment were obtained from water content determination tests, volumetric shrinkage tests, unconfined compressive strength tests, flexural tests and permeation tests. Mineralogical composition and microstructural characterization of the solidified sediment using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were obtained. The solidification mechanism of lake sediment under the coupling of industrial waste and urban construction waste was revealed. The water content of the specimens decreased rapidly, and shrinkage deformation occurred in curing for 7 d. The volumetric shrinkage of 28 d was eventually maintained at 1.27–5.19%. The trend of specimen strength changed with the extension of time in the overall increase state, the compressive strength and flexural strength within 28 d were 3.15–10.96 MPa and 0.64–2.69 MPa, respectively. The solidified sediment material showed excellent anti-seepage performance, the hydraulic conductivity reached stability at 1.22 × 10−8–55.4 × 10−8 cm/s. Gismondine, gypsum, calcite, scawtite and fibrous C-S-H phases were generated in the solidified material.

Keywords