Heliyon (Feb 2024)

Inter-hospital moderate and advanced Alzheimer's disease detection through convolutional neural networks

  • Carlos Roncero-Parra,
  • Alfonso Parreño-Torres,
  • Roberto Sánchez-Reolid,
  • Jorge Mateo-Sotos,
  • Alejandro L. Borja

Journal volume & issue
Vol. 10, no. 4
p. e26298

Abstract

Read online

Electroencephalography (EEG) has been a fundamental technique in the identification of health conditions since its discovery. This analysis specifically centers on machine learning (ML) and deep learning (DL) methodologies designed for the analysis of electroencephalogram (EEG) data to categorize individuals with Alzheimer's Disease (AD) into two groups: Moderate or Advanced Alzheimer's dementia.Our study is based on a comprehensive database comprising 668 volunteers from 5 different hospitals, collected over a decade. This diverse dataset enables better training and validation of our results. Among the methods evaluated, the CNN (deep learning) approach outperformed others, achieving a remarkable classification accuracy of 97.45% for patients with Moderate Alzheimer's Dementia (ADM) and 97.03% for patients with Advanced Alzheimer's Dementia (ADA). Importantly, all the compared methods were rigorously assessed under identical conditions. The proposed DL model, specifically CNN, effectively extracts time domain features from EEG data in time, resulting in a significant reduction in learnable parameters and data redundancy.

Keywords