Frontiers in Marine Science (Jun 2019)
Atlantic Meridional Overturning Circulation: Observed Transport and Variability
- Eleanor Frajka-Williams,
- Isabelle J. Ansorge,
- Johanna Baehr,
- Harry L. Bryden,
- Maria Paz Chidichimo,
- Stuart A. Cunningham,
- Gokhan Danabasoglu,
- Shenfu Dong,
- Kathleen A. Donohue,
- Shane Elipot,
- Patrick Heimbach,
- N. Penny Holliday,
- Rebecca Hummels,
- Laura C. Jackson,
- Johannes Karstensen,
- Matthias Lankhorst,
- Isabela A. Le Bras,
- M. Susan Lozier,
- Elaine L. McDonagh,
- Christopher S. Meinen,
- Herlé Mercier,
- Bengamin I. Moat,
- Renellys C. Perez,
- Christopher G. Piecuch,
- Monika Rhein,
- Meric A. Srokosz,
- Kevin E. Trenberth,
- Sheldon Bacon,
- Gael Forget,
- Gustavo Goni,
- Dagmar Kieke,
- Jannes Koelling,
- Tarron Lamont,
- Tarron Lamont,
- Gerard D. McCarthy,
- Christian Mertens,
- Uwe Send,
- David A. Smeed,
- Sabrina Speich,
- Marcel van den Berg,
- Denis Volkov,
- Chris Wilson
Affiliations
- Eleanor Frajka-Williams
- National Oceanography Centre, Southampton, United Kingdom
- Isabelle J. Ansorge
- Department of Oceanography, University of Cape Town, Cape Town, South Africa
- Johanna Baehr
- Institute of Oceanography, CEN, Universitat Hamburg, Hamburg, Germany
- Harry L. Bryden
- University of Southampton, Southampton, United Kingdom
- Maria Paz Chidichimo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Servicio de Hidrografía Naval and UMI-IFAECI/CNRS, Buenos Aires, Argentina
- Stuart A. Cunningham
- Scottish Association for Marine Science, Oban, Scotland
- Gokhan Danabasoglu
- National Center for Atmospheric Research, Boulder, CO, United States
- Shenfu Dong
- Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, United States
- Kathleen A. Donohue
- University of Rhode Island, Narragansett, RI, United States
- Shane Elipot
- 0Rosenstiel School of Marine and Atmospheric Science, University of Miami, Coral Gables, FL, United States
- Patrick Heimbach
- 1Jackson School of Geosciences, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
- N. Penny Holliday
- National Oceanography Centre, Southampton, United Kingdom
- Rebecca Hummels
- 2GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Laura C. Jackson
- 3Met Office Hadley Centre, Exeter, United Kingdom
- Johannes Karstensen
- 2GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Matthias Lankhorst
- 4Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
- Isabela A. Le Bras
- 4Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
- M. Susan Lozier
- 5Nicholas School of the Environment, Duke University, Durham, NC, United States
- Elaine L. McDonagh
- National Oceanography Centre, Southampton, United Kingdom
- Christopher S. Meinen
- Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, United States
- Herlé Mercier
- 6Laboratoire d'Oceanographie Physique et Spatiale, CNRS, Plouzané, France
- Bengamin I. Moat
- National Oceanography Centre, Southampton, United Kingdom
- Renellys C. Perez
- Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, United States
- Christopher G. Piecuch
- 7Woods Hole Oceanographic Institution, Woods Hole, MA, United States
- Monika Rhein
- 8Center for Marine Environmental Sciences MARUM, Institute for Environmental Physics IUP, Bremen University, Bremen, Germany
- Meric A. Srokosz
- National Oceanography Centre, Southampton, United Kingdom
- Kevin E. Trenberth
- National Center for Atmospheric Research, Boulder, CO, United States
- Sheldon Bacon
- National Oceanography Centre, Southampton, United Kingdom
- Gael Forget
- 9Massachusetts Institute of Technology, Cambridge, MA, United States
- Gustavo Goni
- Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, United States
- Dagmar Kieke
- 8Center for Marine Environmental Sciences MARUM, Institute for Environmental Physics IUP, Bremen University, Bremen, Germany
- Jannes Koelling
- 4Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
- Tarron Lamont
- Department of Oceanography, University of Cape Town, Cape Town, South Africa
- Tarron Lamont
- 0Department of Environmental Affairs, Cape Town, South Africa
- Gerard D. McCarthy
- 1ICARUS, Department of Geography, Maynooth University, Maynooth, Ireland
- Christian Mertens
- 8Center for Marine Environmental Sciences MARUM, Institute for Environmental Physics IUP, Bremen University, Bremen, Germany
- Uwe Send
- 4Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
- David A. Smeed
- National Oceanography Centre, Southampton, United Kingdom
- Sabrina Speich
- 2Laboratoire de Meteorologie Dynamique, UMR 8539 Ecole Polytechnique, ENS, CNRS, Paris, France
- Marcel van den Berg
- 0Department of Environmental Affairs, Cape Town, South Africa
- Denis Volkov
- Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, United States
- Chris Wilson
- 3National Oceanography Centre, Liverpool, United Kingdom
- DOI
- https://doi.org/10.3389/fmars.2019.00260
- Journal volume & issue
-
Vol. 6
Abstract
The Atlantic Meridional Overturning Circulation (AMOC) extends from the Southern Ocean to the northern North Atlantic, transporting heat northwards throughout the South and North Atlantic, and sinking carbon and nutrients into the deep ocean. Climate models indicate that changes to the AMOC both herald and drive climate shifts. Intensive trans-basin AMOC observational systems have been put in place to continuously monitor meridional volume transport variability, and in some cases, heat, freshwater and carbon transport. These observational programs have been used to diagnose the magnitude and origins of transport variability, and to investigate impacts of variability on essential climate variables such as sea surface temperature, ocean heat content and coastal sea level. AMOC observing approaches vary between the different systems, ranging from trans-basin arrays (OSNAP, RAPID 26°N, 11°S, SAMBA 34.5°S) to arrays concentrating on western boundaries (e.g., RAPID WAVE, MOVE 16°N). In this paper, we outline the different approaches (aims, strengths and limitations) and summarize the key results to date. We also discuss alternate approaches for capturing AMOC variability including direct estimates (e.g., using sea level, bottom pressure, and hydrography from autonomous profiling floats), indirect estimates applying budgetary approaches, state estimates or ocean reanalyses, and proxies. Based on the existing observations and their results, and the potential of new observational and formal synthesis approaches, we make suggestions as to how to evaluate a comprehensive, future-proof observational network of the AMOC to deepen our understanding of the AMOC and its role in global climate.
Keywords
- meridional overturning circulation
- thermohaline circulation
- observing systems
- ocean heat transport
- carbon storage
- moorings