International Journal of Endocrinology (Jan 2012)
Central Role of the EGF Receptor in Neurometabolic Aging
Abstract
A strong connection between neuronal and metabolic health has been revealed in recent years. It appears that both normal and pathophysiological aging, as well as neurodegenerative disorders, are all profoundly influenced by this “neurometabolic” interface, that is, communication between the brain and metabolic organs. An important aspect of this “neurometabolic” axis that needs to be investigated involves an elucidation of molecular factors that knit these two functional signaling domains, neuronal and metabolic, together. This paper attempts to identify and discuss a potential keystone signaling factor in this “neurometabolic” axis, that is, the epidermal growth factor receptor (EGFR). The EGFR has been previously demonstrated to act as a signaling nexus for many ligand signaling modalities and cellular stressors, for example, radiation and oxidative radicals, linked to aging and degeneration. The EGFR is expressed in a wide variety of cells/tissues that pertain to the coordinated regulation of neurometabolic activity. EGFR signaling has been highlighted directly or indirectly in a spectrum of neurometabolic conditions, for example, metabolic syndrome, diabetes, Alzheimer’s disease, cancer, and cardiorespiratory function. Understanding the positioning of the EGFR within the neurometabolic domain will enhance our appreciation of the ability of this receptor system to underpin highly complex physiological paradigms such as aging and neurodegeneration.