Journal of Integrative Agriculture (Jan 2022)

BcSDR1 is involved in regulation of glucose transport and cAMP and MAPK signaling pathways in Botrytis cinerea

  • He-long SI,
  • Kang ZHANG,
  • Bai LI,
  • Xue-mei YUAN,
  • Jin-ping ZANG,
  • Hong-zhe CAO,
  • Ji-hong XING,
  • Jin-gao DONG

Journal volume & issue
Vol. 21, no. 9
pp. 2628 – 2640

Abstract

Read online

Botrytis cinerea is a typical necrotrophic pathogenic fungus that causes severe diseases in a wide range of plant species, leading to significant economic losses. Our previous study showed that BcSDR1 positively regulates growth, development, and pathogenicity of B. cinerea. However, the regulation mechanism of BcSDR1 and the relationship between BcSDR1 and cAMP and MAPK signaling pathways are not well understood. In this study, transcriptome data showed that BcSDR1 is involved in glucose transmembrane transport, signal transduction, secondary metabolism, and other biological processes. BcSDR1 mutant (BCt41) showed remarkably weak sensitivity to cAMP and MAPK signaling pathways specific inhibitors, SQ22536 and U0126, and significantly decreased cAMP content. The key genes of cAMP and MAPK signaling pathways, BcGB1, BcBTP1, BcBOS1, BcRAS1, and BcBMP3 were significantly upregulated, whereas BcPLC1, BcBCG1, BcCDC4, BcSAK1, BcATF1, and BcBAP1 were significantly downregulated (P<0.05). BcSDR1 was obviously upregulated in BcBCG2, BcBCG3, BcPKA1, and BcPKAR RNA interference (RNAi) mutants, but significantly downregulated in BcPKA2, BcBMP1, and BcBMP3 RNAi mutants. Thus, BcBCG2, BcBCG3, BcPKA1, and BcPKAR negatively regulate BcSDR1 expression, whereas BcPKA2, BcBMP1, and BcBMP3 positively regulate BcSDR1 expression.

Keywords