Remote Sensing (Mar 2020)

Partitioned Relief-F Method for Dimensionality Reduction of Hyperspectral Images

  • Jiansi Ren,
  • Ruoxiang Wang,
  • Gang Liu,
  • Ruyi Feng,
  • Yuanni Wang,
  • Wei Wu

DOI
https://doi.org/10.3390/rs12071104
Journal volume & issue
Vol. 12, no. 7
p. 1104

Abstract

Read online

The classification of hyperspectral remote sensing images is difficult due to the curse of dimensionality. Therefore, it is necessary to find an effective way to reduce the dimensions of such images. The Relief-F method has been introduced for supervising dimensionality reduction, but the band subset obtained by this method has a large number of continuous bands, resulting in a reduction in the classification accuracy. In this paper, an improved method—called Partitioned Relief-F—is presented to mitigate the influence of continuous bands on classification accuracy while retaining important information. Firstly, the importance scores of each band are obtained using the original Relief-F method. Secondly, the whole band interval is divided in an orderly manner, using a partitioning strategy according to the correlation between the bands. Finally, the band with the highest importance score is selected in each sub-interval. To verify the effectiveness of the proposed Partitioned Relief-F method, a classification experiment is performed on three publicly available data sets. The dimensionality reduction methods Principal Component Analysis (PCA) and original Relief-F are selected for comparison. Furthermore, K-Means and Balanced Iterative Reducing and Clustering Using Hierarchies (BIRCH) are selected for comparison in terms of partitioning strategy. This paper mainly measures the effectiveness of each method indirectly, using the overall accuracy of the final classification. The experimental results indicate that the addition of the proposed partitioning strategy increases the overall accuracy of the three data sets by 1.55%, 3.14%, and 0.83%, respectively. In general, the proposed Partitioned Relief-F method can achieve significantly superior dimensionality reduction effects.

Keywords