Applied Sciences (Apr 2022)
Enhanced Hybrid Ant Colony Optimization for Machining Line Balancing Problem with Compound and Complex Constraints
Abstract
Targeted at the machining production line balancing problem, based on the precedence constraint relation of the present machining task, this article suggests adding practical constraints such as advanced station preparations, post-auxiliary tasks, and tool changing. The study introduced ‘tight’ and ’or’ constraints to bring the problem definition closer to the actual situation. For this problem, a mixed-integer programming model was constructed in this study. The model redefines the machining and auxiliary processing tasks and adds new time constraints to the station. The model considers two optimisation objectives: the number of stations and the machining line balancing rate. In view of the complexity of the problem, heuristic task set filtering mechanisms were designed and added to the ant colony optimisation, to satisfy the above compound and complex constraints. The processing task chain was constructed using the rules of ant colony pheromone accumulation and a random search mechanism. The study designed a Gantt chart generation module to improve the usability and visibility of the program. Ultimately, through an actual case study of a complex box part including 73 processing elements and realising the design and planning of machining production lines that meet complex constraints by substituting algorithms, the balance rates of several groups of optimisation schemes were higher than 90%, which showed that the algorithm is effective and has a good economy and practicability.
Keywords