The Plant Genome (Sep 2022)

Genome‐wide identification and characterization of the MAPKKK, MKK, and MPK families in Chinese elite maize inbred line Huangzaosi

  • Zi Shi,
  • Bingbing Zhao,
  • Wei Song,
  • Ya Liu,
  • Miaoyi Zhou,
  • Jiarong Wang,
  • Jiuran Zhao,
  • Wen Ren

DOI
https://doi.org/10.1002/tpg2.20216
Journal volume & issue
Vol. 15, no. 3
pp. n/a – n/a

Abstract

Read online

Abstract Mitogen‐activated protein kinase (MAPK or MPK) cascades consist of three protein kinase components, MAPK kinase kinases (MAPKKKs), MAPK kinases (MKKs and MPKs), which are indispensable for various plant physiological processes. The functions of MAPK families have been extensively studied in maize (Zea mays L.) and other plant species, but little is known about MAPK families in the elite Chinese maize line Huangzaosi (hzs). In this study, we observed that overall performance of Huangzaosi was substantially better than that of B73 under drought conditions at the seedling and V16 stages with a favorable root/canopy ratio. In silico analyses identified 72, 10, and 24 MAPKKKs, MKKs, and MPKs, respectively, in Huangzaosi. Examinations of phylogenetic relationships among Arabidopsis thaliana (L.) Heynh., rice (Oryza sativa L.), and maize (lines B73 and hzs), gene structures, conserved protein motifs, and chromosomal locations revealed their evolutionary relationships. The basal gene expression levels and tissue specificities of all three MAPK families in hzs reflected the diversity in the MAPK functions related to growth and development. The quantitative real‐time polymerase chain reaction (qPCR) assay indicated that certain MAPK genes with high basal expression levels in the primary and crown roots responded differentially to drought between B73 and hzs, suggesting that these genes may contribute to their distinct drought tolerance at different developmental stages. The important information regarding the evolution and expression of hzs MAPK family members generated in this study provides a new avenue for the better understanding on the regulatory mechanism of MAPK cascade in the core inbred line hzs, which may be useful to guide the development of new maize cultivars with desirable traits (e.g., drought resistance).