Data in Brief (Jun 2019)
Data on the enzymatic conversion of alkaline peroxide oxidative pretreated sugarcane bagasse for the production of fermentable sugars
Abstract
Central composite design (CCD) approach of the response surface methodology design of experiment was adopted to determine the production of fermentable sugars after enzymatic conversion of alkaline peroxide oxidative pretreated sugarcane bagasse lignocellulose. MINITAB 16 statistical software was used to design the experiments, evaluate and interpret data generated during the process. The effects of factors such as time, hydrogen peroxide concentration, and temperature on treated biomass for reducing sugars (RS) production were investigated. Operating pretreatment conditions (low–high design levels) were reaction time (6–10 h), hydrogen peroxide concentrations (1–3%v/v), and reaction temperature (60–90 °C). With the desirability of optimization of 1.000, optimal reducing sugar yield after enzymatic hydrolysis was validated to be at 100.2 °C, reaction time of 4.6 h, and hydrogen peroxide concentration of 0.3% with optimum RS yield of 153.74 mg equivalent glucose/g biomass. Keywords: Fermentable sugars, Central composite design, Pretreatment, Enzymatic hydrolysis, Optimization