Applied Sciences (Sep 2019)

Optimizing Single-Shot Coherent Power-Spectrum Scattering Imaging Adaptively by Tuning Feedback Coefficient for Practical Exposure Conditions

  • Wei Wang,
  • Yanfang Guo,
  • Wusheng Tang,
  • Wenjun Yi,
  • Mengzhu Li,
  • Mengjun Zhu,
  • Junli Qi,
  • Jubo Zhu,
  • Xiujian Li

DOI
https://doi.org/10.3390/app9183676
Journal volume & issue
Vol. 9, no. 18
p. 3676

Abstract

Read online

With only one piece of the power-spectrum pattern, the single-shot coherent power-spectrum imaging can provide a clear object image for real-time applications even if the object is hidden by opaque scattering media, in which the feedback coefficient β value for the reconstruction with least retrievals and fastest speed has to be pre-estimated through time-consuming iterative loops. Here we report a method for estimating the optimal β value from the captured raw power-spectrum images adaptively to optimize the single-shot coherent power-spectrum imaging for practical exposure conditions. The results demonstrate that, based on exposure level analysis of the captured raw power-spectrum images even of underexposure, moderate exposure, and overexposure cases, the β value could be quickly determined with a compact expression for the algorithm to achieve clear reconstruction output efficiently. The proposed method helps to push ahead of the coherent diffractive imaging devices for real-time imaging through turbid mediums in Artificial Intelligence (AI), driving assistance, and flight assistance applications.

Keywords