ISPRS International Journal of Geo-Information (Feb 2016)
An Assessment of Urban Surface Energy Fluxes Using a Sub-Pixel Remote Sensing Analysis: A Case Study in Suzhou, China
Abstract
Urban surface energy fluxes are closely associated with land-cover types (LCTs) and critical biophysical compositions. This study aims to assess the contribution of LCTs, vegetation fractional coverage (VFC) and percentage of impervious surface area (ISA%) to urban surface energy fluxes using remote sensing. An advanced urban surface energy flux algorithm was used to combine satellite imagery and meteorological station data to investigate the thermal environments in the city of Suzhou, China. The land cover abundances retrieved by multiple endmember spectral unmixing analysis (MESMA) were used to retrieve the per-pixel sensible heat flux (H) and latent heat flux (LE). The resultant heat fluxes were assessed using evaporation pan data collected from meteorological stations and ratios of the heat fluxes to the net radiation (Rn). Furthermore, spatial patterns of urban heat energy were investigated using an integrated analysis among land surface temperature (LST), heat fluxes, LCTs, VFC and ISA%. The high values of H and LST were found over the urbanized areas, which also had low values of LE. Conversely, the vegetated area was characterized with high LEs, as well as low LSTs and Hs. Moreover, a statistically-significant correlation (p < 0.05; R2 = 0.88) was observed between LE and VFC at the zonal level, and a statistically-significant correlation (p < 0.05; R2 = 0.90) was exhibited between H and ISA%. It is concluded that VFC, ISA% and LCTs are promising for delineating urban heat fluxes. Overall, this study indicates that remote sensing techniques can be used to quantify urban thermal environments.
Keywords