Applied Sciences (Apr 2022)

A Deep Learning Approach for Sentiment Analysis of COVID-19 Reviews

  • Chetanpal Singh,
  • Tasadduq Imam,
  • Santoso Wibowo,
  • Srimannarayana Grandhi

DOI
https://doi.org/10.3390/app12083709
Journal volume & issue
Vol. 12, no. 8
p. 3709

Abstract

Read online

User-generated multi-media content, such as images, text, videos, and speech, has recently become more popular on social media sites as a means for people to share their ideas and opinions. One of the most popular social media sites for providing public sentiment towards events that occurred during the COVID-19 period is Twitter. This is because Twitter posts are short and constantly being generated. This paper presents a deep learning approach for sentiment analysis of Twitter data related to COVID-19 reviews. The proposed algorithm is based on an LSTM-RNN-based network and enhanced featured weighting by attention layers. This algorithm uses an enhanced feature transformation framework via the attention mechanism. A total of four class labels (sad, joy, fear, and anger) from publicly available Twitter data posted in the Kaggle database were used in this study. Based on the use of attention layers with the existing LSTM-RNN approach, the proposed deep learning approach significantly improved the performance metrics, with an increase of 20% in accuracy and 10% to 12% in precision but only 12–13% in recall as compared with the current approaches. Out of a total of 179,108 COVID-19-related tweets, tweets with positive, neutral, and negative sentiments were found to account for 45%, 30%, and 25%, respectively. This shows that the proposed deep learning approach is efficient and practical and can be easily implemented for sentiment classification of COVID-19 reviews.

Keywords